Hurricane: kicking skew out of analytics

Jun 23, 2018

Hurricane is a high-performance large-scale data analytics system that successfully tames skew in novel ways. Hurricane performs adaptive work partitioning based on load observed by nodes at runtime. Overloaded nodes can spawn clones of their tasks at any point during their execution, with each clone processing a subset of the original data. This allows the system to adapt to load imbalance and dynamically adjust task parallelism to gracefully handle skew. We support this design by spreading data across all nodes and allowing nodes to retrieve data in a decentralized way. The result is that Hurricane automatically balances load across tasks, ensuring fast completion times.

For more details, you can find the paper here.